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ABSTRACT 

EFFECT OF JUNCTION GEOMETRY ON MONODISPERSED 
MICRODROPLET GENERATION IN MICROFLUIDIC 

AQUEOUS TWO-PHASE SYSTEMS 
 

by 

 

Young Gyu Nam 

 
The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Woo-Jin Chang 
 
 

Aqueous two-phase system (ATPS) consists of two immiscible water-based 

solutions of polymers, which can form phase partitioning. Dextran and polyethylene 

glycol I used in this thesis is the one of common components of aqueous two-phase 

system give a reliable and incompatible environment for purification of biomedical 

products and cellular macromolecules. Recently, ATPS have received increasing 

attention as a separation method in microfluidic device due to the advantages of 

biocompatibility, unlimited combination, and low interfacial tension. Hence, it became an 

important to discover researches related to ATPS microfluidic device.  

Microdroplets produced in microfluidic device are a largely interesting 

phenomenon for various applications. Monodisperse and size manageable microdroplets 

using ATPS could potentially be used to better micro-enviornment. However, extremely 

low interfacial tension (≤ 100 µN/m) leading to viscoelastic fluid (non-Newtonian) 

characteristic makes it difficult to generate microdroplets. It is necessary to control the 

physical and topological behavior of ATPS. 
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Therefore, this thesis aims to study fluid mechanism for droplet-based 

microfluidics using ATPS. Droplet generation using aqueous two phase systems (ATPS) 

in microfluidic device was studied by various junction areas which were considered as T-

junction, flow-focusing, and double-flow-focusing. The characteristic of low interfacial 

tension and high viscosity between aqueous phases was the challenge to produce uniform 

micro-droplets.  

The importance of this experiment is that in contrast to another external 

installations previously studied, double-flow-focusing channel drew advantages of simple 

method, cost effective, and heavy workload. Without the continuous mechanical pressure 

by pressure-driven flow, no external actuations were used. T-junctions and flow-focusing, 

broadly used for microfluidic device, were compared with double-flow-focusing channel. 

The role of each flow-focusing junction for monodisperse water-in-water (w/w) droplets 

was investigated. Additional flow-focusing junction for monodisperse water-in-water 

(w/w) droplets brought the consequence different from T-juntion and flow-focusing. 

Moreover, I proved that PEG and Dextran droplets within double-flow-focusing could be 

formed with combination of two continuous flow rates. Surfactant impact on droplet 

generation in ATPS was studied. 

 Thus, a double-flow-focusing microfluidic device I developed was able to be a 

crucial method to generate water-in-water (w/w) droplets due to the stability of dispersion 

between two junction areas.  
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Chapter 1 

 

 

Introduction 

 

The first chapter will briefly introduce background information related to the 

research of aqueous two-phase system in droplet-based microfluidic device. First of all, 

the improvement for the microfluidic technology and its current application will be 

explained. It has a wide range of applications in biological process and traditional 

chemical processes with various advantages. The following section will be expanded to 

the droplet-based microfluidic system of interests in this thesis. Finally, the 

characteristics of aqueous two-phase system (ATPS) will be also discussed with its 

applications in microfluidic device. 

 

1.1 Introduction to Microfluidics 

In the past few decades, MEMS (Micro-Electro-Mechanical System) technology 

has paid attention due to increasing public demand on more sophisticated and minimized 

equipment and devices. Under the supervision of cost minimization, an initial concept of 
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manufacturing a biochemical laboratory on a small chip resulted in a microfluidic device. 

When microfluidics came out as a new alternative one in micro/nanotechnology, it has 

become revolution forward the existing chemical and biological processes. Microfluidics 

is a multidisciplinary science of designing, manufacturing, and formulating devices and 

processes that lead to change our ability to manipulate tiny volumes of fluid or micro and 

nanoparticles. Currently, it is not only used for chemical and biochemical analysis [1], 

but also for chemical synthesis [2][3], sensors [4][5], cell capture and counting, 

micropumps, actuators, and high-throughput design [1][6]. Since the early 1990s, there 

has been a progressive development in microfluidic field enabled by the standardized 

technologies based on MEMS such as photolithography. The most recent soft lithography 

techniques provide a well-standardized procedure for microfluidic devices fabrication [7]. 

The microfluidic device is a small chip containing microchannels, inlets, and 

outlets. For a typical microfluidic system, the fluid is introduced into the microchannels 

via the inlets and is transported along the microchannels until the outlet. The most 

common means of driving fluids passing through microscale-diameter tubes is pressure-

driven force applied by the use of pressurized syringe pumps or by electric field. 

The advantage of microfluidics is its small volume consumption, fast analysis and 

respond, sophisticated control, compact size, high-throughput monitor, low fabrication 

cost, and environmental material. From the view of fluid mechanics, it is important for 

micro-scale studying to understand interfacial phenomena that physical factors, which are 

interfacial tension, pressure drop, and viscosity, are dominant rather than the effect of 

gravity. Micro-scale flows are typically laminar flow due to short length scales.  
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1.2 Droplet-based Microfluidics 

Droplet-based microfluidics involves the generation, manipulation, and the use of 

discrete picoliter to nanoliter droplets inside microfluidic devices. The demand of 

droplets as micro-reactors that manipulated small volume for biological and chemical 

analysis has been increased in the ability of lab-on-a-chip applications [8]. The studies of 

observing chemical and biochemical reactions in droplets have been also explored in 

microfluidic devices [9][10]. Since the perception of miniaturization became significant 

for biological and chemical sciences, water-in-oil (w/o) microdroplets has brought 

advantages of a lower cost and simple experimental format for high-throughput screening.  

Hence, these micro-reactors developed in a microfluidic device clearly expanded 

possibilities to deploy for biological and chemical processes. One faultless advantage of 

monodispersed droplets is that very small volumes and large amounts of individual 

reactors allow the encapsulation and the analysis of DNA, protein, or cells [11].  

Because of the economy of small volumes and ability for high numbers, droplet 

generation in microfluidic channel will have to be versatile and flexible so that micro-

droplet as single reactor can detect oncogenes or other important disease genes in a high-

throughput screening. In well-known channel geometries such as the T-shaped junctions 

and Flow-focusing, two immiscible fluids, when they meet each other, formulate droplets 

of uniform size. Each micro-size droplet serves an independent reactor with chaotic 

advection. Various analytical methods have been integrated on a microfluidic device [1]. 

In summary, previous studies for aqueous droplet’s application are conducted by using 

biocompatible oils and surfactants so that cells and worms can last their lives in droplets 

[12]. However, it is able to be a more effective solution for quantitative cell biology and 
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enzyme/protein separation to provide individual microenvironment in aqueous two-

phases system. 

Importantly, the field of droplet microfluidics has relied on the use of organic 

solvents in combination with aqueous solutions for the production of particles form 

emulsions. A disadvantage of the use of organic solutions is that they harm biomaterial 

upon encapsulation. Aqueous biodegradable polymer microdroplet not only apply for a 

better understanding of cells, but these biodegradable materials looks forward to being 

practical solutions in fields as diverse as food, cosmetics, pharmacy, self-assembly [13], 

tissue engineering[14], multiplexing assays [15], and drug delivery [16]. 

 

1.3 Aqueous Two-Phase System 

It is very difficult to completely isolate the desired products from organic solvents, 

which are mostly very toxic. However, Aqueous Two-Phase System (ATPS) has become 

a powerful method for separation of a range of biomaterials, such as DNA, protein, cell, 

organelle, and biological membrane [17]. Generally, ATPS is formed by the 

incompatibility of two aqueous polymer solutions [18] or one polymer and an appropriate 

salt solution [19][20]. The phase separation occurs above certain concentrations of 

polymers or salts in the system because of the repulsion between molecules at high 

concentrations. 

Normally, approximately 65 ~ 95% of high water content in ATPS gives 

favorable condition to the stability of biomolecules compared to water/organic two-phase 

systems [21]. Also, various different separation environments are available in ATPS 

depend on the concentration and molecular weight of the composing salt and polymers, 
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temperature, and pH. Recently, aqueous two-phase systems (ATPS) have been 

extensively studied due to the fact that they do not contain harmful chemicals. One 

typical sample is an aqueous two-phase system composed of poly(ethylene glycol) (PEG) 

and dextran (DEX). It has been found this ATPS is able to separate a variety of 

macromolecules, membranes, and organelles, and cells [22][23]. 

Moreover, a picoliters of volume of ATPS microenvironment for biochemical 

reaction makes it possible to mimic heterogeneous environment inside a eukaryotic cell 

in microfluidics channels. One of the characteristics of such aqueous two-phase systems 

is that their interfacial tension is extremely low. The typical range of interfacial tension in 

ATPS is from 1 to a few hundred µN/m [24][25]. In this project, microfluidic aqueous 

two-phase micro-droplet systems composed of PEG and DEX solutions have been 

successfully created and investigated. 
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Chapter 2 

 

 

Literature Survey 

 

This chapter will summarize the physical understanding, main observation of 

droplet formation, aqueous two-phase system in droplet-based microfluidics, and its 

applications in biology, chemistry, and biomedicine [28]. To begin with, section 2.1 

reviews the physics of small size world, which explain a series of dimensionless numbers 

related to various physical phenomena. Section 2.1.2 introduces governing differential 

equations for fluid dynamics. Specifically, the Reynolds number, Re, representing inertial 

effects, and the capillary number, Ca, expressing the importance of interfacial tension are 

discussed (section 2.1.3 and section 2.1.4). In this literature survey, we deal with the 

production of picoliter droplets by microfluidic method (section 2.2). Because of low 

Reynolds number and Capillary number, the laminar flow in microfluidic devices allows 

the mass production of microparticles with size control, shape, and morphology. Droplet-

based microfluidic system primarily relies on the use of oil and water for the formation of 

monodisperse particles (section 2.2.1) and has potential application for chemistry and 
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biology (section 2.2.2). In this thesis, we investigate the advantages of the use of 

immiscible aqueous solutions instead of oil and water systems (section 2.3). After 

providing background information on ATPS, we will assess the consequences of their use 

in microfluidics and one in droplets-based microfluidics the following sections 2.3.1 and 

2.3.2. In contract to oil-water systems, the droplet formation produced by ATPS is a 

challenge because one of unique features of ATPS, which has extremely low interfacial 

tension. 

 

2.1 Physics at the Micrometric Scale  

The characteristic of microfluidics is that the fundamental physical properties, 

which are interfacial tension, pressure drop, and viscosity, are more significant factors 

than the effect of gravity as the size scale is decreased [26]. The interpretation of fluid 

physics in a small scale can be explained by relationships between various phenomena 

[27]. A series of dimensionless numbers express their relative importance meanings. 

Microfluidics has the potential dealing with small amount of volumes, fast analysis and 

response times, and high-throughput analysis in a short time [28]. Microfluidic device 

would be a powerful tool for better understanding microscale phenomena, which can 

implement experiments not possible on the macroscale. The recent attention of interest in 

fluid flows, and their manipulation and control, has been raised in micrometric scale [10]. 

Hence, it is significant to understand fluid dynamics where viscous effects, as a role of 

frictional influence interior to the fluid, are dominant in small length scales. 
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2.1.1 Dimensionless Numbers in Microfluidics 

A wide range of physical phenomena takes place in microfluidic devices [27]. 

Dimensionless numbers defined as ratio of quantities that are not dimensionless can be 

used to express these phenomena of fluid mechanics in micro scale. In this perspective of 

fluid mechanics, we review the dimensionless numbers listed in Table 1 [29]: the 

Reynolds number, Re, relating inertial forces to viscous forces and the capillary number 

Ca, relating viscous forces to surface tension; the Deborah, Weissenberg, and elasticity 

numbers De, Wi, and El, expressing elastic effects; the Grashof and Rayleigh numbers Gr 

and Ra, relating transport mechanisms in buoyancy-driven flows, the Knudsen number 

Kn, relating microscopic to macroscopic length scales, and We, relating fluid’s inertia to 

surface tention. The velocity profile is a parabolic Poiseuille flow in parallel substrates 

from the vertical sidewalls of the microchannel. Through microchannels, the profile of 

velocity field is linear and the shear rate is proportional to the flow rate. The steady 

Poiseuille flow has no convective transport of momentum shown in Figure 1. 

 

Figure 2.1 (a) rectangular and (b) circular microchannels, through which fluid flows with 
characteristic velocity scale 𝑼𝟎. Channel length will be denoted l, width ( or radius ) w, and height h. 
The coordinate z points downstream, y spans the width, and x spans the height. 
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Table [1] Dimensionless Numbers in Microfluidics 

 
Dimensionless Number 

 

 
Definition 

 
Significance 

 
Re 

 

 
Reynolds No. 

𝜌𝑈!𝐿!
𝜇   

Inertia / viscous 

 
Ca 

 

 
capillary No. 

𝜇𝑈!
𝛾   

Viscous / interfacial 

 
We 

 

 
Weber No. 

𝜌𝑈!𝑙
𝜎  

 
Inertia / surface tension 

 

2.1.2 The Continuity Equation and Navier-Stokes Equation 

For flows in microfluidic device, aqueous solutions are considered as 

incompressible one having uniform density. This section describes the motion and 

deformation of fluids in micro scale. To begin with, we discuss conservation of mass and 

momentum for incompressible flows of Newtonian fluids. Conservation of mass is 

specified by the integral relation 

𝜕
𝜕𝑡 𝜌𝑑𝑉 = − (𝜌𝐮

!"#$%&'!"
) ∙ 𝐧𝑑𝐴 

where 𝐧 is a unit normal vector along the surfaces 𝑆 [m2], 𝑡 is time [s], and 𝜌 is the fluid 

density [kg/m3]. This relation states that the change in mass within a control volume 

denoted by 𝑉 [m3] is given by the surface integral of the flux of mass crossing the surface 

of the volume. Conservation of mass equation can be written as; 

𝜕𝛒
𝜕𝑡 + ∇ ∙ 𝜌𝐮 = 0 
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For an incompressible fluid ( 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ), this simplifies to 

∇ ∙ 𝑢 = 0 

In microfluidic systems, the most dominant body force is the Coulomb force on the 

interface with net surface charge in an electric field [26]. Gravity force governing 

macroscopic fluid mechanics is negligible in microscale flows [30]. 

The conservation of momentum equation for a continuum is given by the Navier-Stokes 

equations if a fluid is Newtonian. 

  𝜌
𝜕𝒖
𝜕𝑡 + 𝒖 ∙ ∇𝒖 = ∇ ∙ 𝛔 = −∇𝑝 + 𝜇∇!𝒖 

Forces on such elements are due to fluid stresses 𝛔 (forces per unit area) applied on the 

element surfaces. However, many fluids exist for which the Newtonian formulation is 

inaccurate. Non-Newtonian fluids commonly used in microfluidics are made of long 

polymeric molecules, which align when they are sheared and slide along on another more 

easily at high strain rate [26]. In microfluidic device, many studies used long polymeric 

materials in separation media for DNA [31] and protein [32] separations. Colloidal 

systems (one example is blood) are also utilized [33]. Another non-Newtonian fluid type 

(one example is aqueous two-phase system (ATPS)) is a viscoelastic fluid, which 

combines a viscous (fluid) response with an elastic (solid) response [34]. Hence, other 

approaches are necessary for these non-Newtonian fluids that the stress-strain rate 

relation is non-linear in microfluidics device. Through this thesis, double-flow-focusing 

design we will explore could be a meaningful approach to observe of droplet breakup 

mechanism in aqueous two-phase system (ATPS) microfluidics. 
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2.1.3 The Reynolds Number, Re 

Reynolds numbers is a useful characterization of flows in microchannel. In most 

microfluidic devices, the Reynolds number ranges between 10-6 - 100 [29] because the 

channel length is less than 100 µm and flow velocity cm/sec. When Reynolds number is 

very small as resulting in linear, viscous forces typically overwhelm inertial forces, and 

the resulting flows are linear. Reynolds number is first defined by Osborne Reynolds 

(1842 ~ 1912) as follow: 

𝑅𝑒 =
𝜌𝑈!𝑙
𝜇  

,where 𝜌 is fluid density, 𝑈! the characteristic velocity, 𝑙 the length, and 𝜇the viscosity. 

Laminar flow depending on Reynolds number is occurred in microfluidics but inertia 

becomes less relevant to microfluidic systems. Inertia force has rarely impact on physics 

as systems are made ever smaller, however, many physical processes, such as capillary 

effects at free surfaces, viscoelasticity in polymer solutions, and electrokinetic effects, do 

exist. 

2.1.4 The Capillary Number, Ca  

Between two immiscible phases in micro scale, we can consider capillary stresses 

of magnitude 𝛾/𝑅 balance viscous stresses 𝜇/ℎ, giving a characteristic droplet size 

𝑅 ≈
𝛾ℎ
𝜇𝑈!

=
ℎ
Ca 
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So, we have introduced the capillary number 

𝐶𝑎 =
𝜇𝑈!
𝛾  

, where 𝛾 is the surface tension [N/m], 𝑅 the surface curvature [m], 𝑈! the characteristic 

velocity [m2/s], and 𝜇  shear viscosity [N⋅s/m2].  A dimensionless parameter found 

whenever interfacial stresses compete with viscous stresses. The droplet size determines 

that surface tension of continuous phase act on interfacial area, and viscous stresses are 

stretched and pull the interface of disperse phase down into downstream. These stresses 

weaken the interfacial tension and form droplets [35][36]. Many pioneer studies are 

contributed for droplet breakup mechanism. A dispersed aqueous phase in flow-focusing 

did breakup relied on Rayleigh-Plateau instability [37-39]. Moreover, surface tension 𝛾 

and viscosity 𝜇 are contributed to microfluidic flow when two immiscible fluids meet 

[40]. Thorsen, T. et al [41] examined firstly droplet formation at T-junction relied on 

Capillary number and Anna, S. L. et al [37] identified the monodispersity of jets at flow-

focusing channel as shown in Figure 2. 

 

Figure 2.2 Microfluidic channel design competitive with Capillary instabilities (a) disperse phase on 
the top flow is introduced into continuous phase moving right to left at T-shape channel [42] (2) a 
stream of water flows between streams of oil and is geometrically focused into a narrow orifice. The 
jet is destabilized by the Rayleigh-plateau instability and forms small, monodisperse droplets. [37] 
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2.2 Droplet-based Microfluidics 

Since the concept of miniaturization over traditional chemical progresses was 

given, recent studies have been dedicated on the development of droplet-based 

microfluidics as new methods in various fields of chemical, biological, and biomedical 

applications[42][43]. The demand of droplets as micro-reactors that manipulated picoliter 

volume for these biological and chemical analyses has been increased in the ability of 

lab-on-a-chip applications [44], thus offering novel platform of miniaturized system. 

Unlike the continuous flow systems, droplet-based microfluidics allows for independent 

control of individual droplet, which provides rapid mixing of reagents inside them [45], 

microparticles synthesis [46], microextraction [47], and protein crystallization [48]. 

These droplets can be fabricated with excellent control over the size 

(distributions), morphology [49], and composition by using immiscible two-phase system. 

It is hypothesized that the pinch-off droplets are formed by the imbalance between two 

immiscible fluids when they meet at junction are. The driving force related between 

action on deformation of the interface by viscous shear stresses and reaction on capillary 

pressure to resist the deformation would affect increase of interfacial instabilities (Ca <1). 

Capillary number ranges between 10-3 and 100 in most microfluidic droplet-based devices 

[50]. Even though meaningful approaches have been attributed to experimental and 

numerical results, it has symbiotically faced the quantitative prediction of droplet regimes 

and droplet sizes as a significant task. 

It is known that microfluidic structure plays a pivotal role in generating 

monodisperse droplets and flow rates [51]. Hence, the droplet’s volume of from picoliter 

to nanoliter in water/organic system is determined by depending on Capillary number. 
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When Capillary number is low, the interfacial tension force dominates and viscous force 

and flow rate influence droplet breakup. Furthermore, multiple emulsion, Janus particles 

[54][55], porous particles [56][57], and core-shell droplet[58] are derived from difference 

droplet generating methods, and it leads to facilitate the acquisition of large amount of 

data. Okushima and Nisisako, et al [52][53] achieved double emulsions through two-step 

T-junction channel as shown in figure 3. Abate, A. et al [58] presented a simple system to 

from high-order multiple emulsions using multiple hydrodynamic flow-focusing. 

Shepherd, F. R. et al [54] and Prasad, N. et al [55] created Janus particles with distinct 

different compositions representing in Figure 5. 

The main features of droplet-based microfluidics are generation and manipulation 

of droplets. Uniformity and size controllable ability are the most important in droplet 

generation methods. The aim of droplet formation is to reveal the regime of droplet 

generation field. Numerous techniques have been developed to obtain homogeneous 

droplets [50]. Uniformity of droplet size can be proved through the distribution of 

standard deviation of 1~3% [59][60]. Hence, monodispersity and uniformity for droplet 

generation in microfluidic device are highly required to confirm that micro-droplet 

produce constant, controlled and predictable behavior. Because of the economy of small 

volumes and ability for high numbers, droplet generation in microfluidic channel will 

have to be versatile and flexible so that micro-droplet as single reactor can detect 

oncogenes or other important disease genes in a high-throughput screening. 

Therefore, since the perception of miniaturization became significant for 

biological and chemical sciences, water-in-oil (w/o) monodisperse particles have brought 

advantages of a lower cost and simple experimental format for high-throughput screening.  
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However, importantly, the field of droplet microfluidics so far relied on the use of 

organic solvents in combination with aqueous solutions to form droplets. A disadvantage 

of the use of organic solution is that they harm biomaterial upon encapsulation. The 

obvious solution is to include immiscible aqueous solutions also known as Aqueous Two-

Phase Systems (ATPS).  

Figure 2.3 (a) Schematic diagram of Formation of double emulsions. (b) Aqueous droplets 
surrounding organic droplets at a hydrophobic T-junction. (c) Organic droplets surrounding blue 
and red aqueous drops. The diameter of the extranal droplet 175 µm [52][53] 

Figure 2.4 Drop maker arrays used to produce multiple emulsions with controlled order. 
Photomicrographs of a) single, b) double, c) triple, d) quadruple, and e) quintuple emulsion drop 
mark arrays. The multiple emulsions produced by the arrays are shown to the right [28] 
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Figure 2.5 (a) Fluorescent image of Y-junction formed for production of Janus spheres (b) backlit 
fluorescence image (green excitation) illustrating that the FITC-silica microspheres remain 
sequestered in the left hemisphere of each granule generated. (c) Optical image of produced HJM 
with dumbbell shapes. (d) Fluorescence images of homogeneous spherical Janus particles. [54][55] 
 

 

2.2.1 Droplet Formation 

As discussed above, droplet formation is explained by the understanding of 

dimensionless number of capillary number, Ca, which is ratio of the viscous force to the 

interfacial tension. The droplet size distribution is in various water/oil system derived 

from the imbalance of interface between two phases. In the microfluidic systems, 

destabilizing the interface among solutions generates micro-droplets. Disperse phase 

stabilizes interface to promote the formation of jet applied by shear stress and fluid inertia 

[61]. Microfluidic methods for forming droplets can be either passive or active. Most 

methods are passive, relying on the flow field to deform the interface and promote the 

natural growth of instability [62][63]. Various size microstructure impacts on droplet 

generation depends immiscible fluids properties such as viscosity, interfacial tension, 

wettability to the material surface and other electric properties. A flow rate of the 
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dispersed phase and continuous phase flows, and its ratio is the factors that can be 

coordinated during the droplet formation procedure. 

The two most common strategies are T-junction and Flow-focusing. These 

common techniques that are often used for generation of droplet in microfluidic system 

are dispersing fluid in a continuous phase with the configuration of co-flowing stream, 

cross-flowing in T-junction and flow-focusing. The dispersed phase and continuous 

phase meet at 90 degrees in a T-shape junction and the dispersed phase is squeezed by 

two focusing flow, imposing phase to pinch off illustrated in Figure 6. Depending mainly 

on the geometry of the microchannels, volumetric flow rate combination and relative 

viscosity of the fluids, the disperse phase is elongated and eventually broken into droplets 

of small volume [64]. These techniques are feasible particularly for fast generation of 

droplet of oil/water two-phase system with uniform size distribution.  

 

 

 

 

 

 

 

 

 

Figure 2.6 (a) Example of droplet formation in a T-junction. The dispersed phase and continuous 
phase meet at 90 degrees in a T-shaped junction (b) Example of droplet production in a flow-focusing 
device. The dispersed phase is squeezed by two counter-streaming flows of the carrier phase, forcing 
drops to detach [60] 
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2.2.2 Droplet-based Microfluidics Application 

Application of droplet produced in microfluidic device has wide range from high-

throughput biological operation to module integration over DNA amplification [44]. 

Multi-step microfluidic device should be prepared for sophisticated biological handling. 

Currently, therefore, integrated microfluidic device can be implemented for biological 

applications: (1) directed evolution – a yeast display library of an enzyme [65] (2) in vitro 

enzyme expression [66] (3) sensitive detection of cell-surface biomarkers on 

compartmentalized single cells [67] (4) toxicity screening [68]. For these reason 

mentioned above, droplet-based microfluidics behavior of transport, mixing, split, and 

sorting extended its application to therapeutic delivery, biomedical imaging, drug 

discovery, biomolecule synthesis, and diagnostics [10].  

 

2.3 Aqueous Two Phase System 

In the previous section I described microfluidic methods to produce droplets from 

oil and water system. In this section, I will discuss the production of water-in-water 

droplets through aqueous two-phase systems having more biocompatibility than water 

and oil system. We will firstly provide general background information on of ATPS build 

up from two or more immiscible aqueous polymer solutions in section 2.3.1 and then 

discuss the use of these systems in co-flowing microfluidic (section 2.3.2) and droplet 

microfluidics (2.3.3) 
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2.3.1 Introduction  

Aqueous two-phase system (ATPS) consists of two immiscible water-based 

solutions of polymers or of one polymer and an inorganic salt, which can form phase 

partitioning. The formation of phase separation occurs due to pH, temperature and ionic 

strength of polymer solutions and concentration affects incompatibility of the polymers in 

the solution [69]. The most widely used ATPS is PEG/dextran system because 

Polyethylene glycol (PEG) conjugated biomolecules and can increase the solubility and 

stability of conjugated biomolecules in general [70][71]. A bottom phase mainly 

composes of dextran in systems, while a top phase mainly contains PEG. The phase 

separation is determined by binodal curve that represents the boundary separating from 

two-phase to single phase on a phase diagram shown in Figure 7. The phase diagram 

across binodal curve is essential for controlling ATPS microdroplets. ATPS droplets are 

emulsified in two-phase region and phases are not separated in single phases in terms of 

polymer concentration. Several factors influence aqueous two-phase system, such as 

molecular weight, concentration, pH, and etc [72][73]. The features ensure of APTS is a 

biocompatible environment but has a low value of interfacial tension in contrast to two 

phase systems comprised of water and an organic solvent. PEG/dextran phase separation 

commonly used for the extraction and purification of biomolecules [74-76]. ATPS have a 

high potential application in industry as a low cost tool, where ATPS containing 

polymers that are easily recycled are the most interesting for environment reasons [71].  
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2.3.2 ATPS in co-flowing Microfluidics 

Recently, ATPS have received increasing attention as a separation method in 

microfluidic device. Various molecules, including protein and cells have been 

successfully separated [77][78] because of the advantage of ATPS that no special 

methods are required to stabilize flows. Hu et al [77] implemented protein purification 

and extraction from Hela cell within microfluidic aqueous two-phase system shown in 

figure 8 (a). FITC labeled hydrophilic proteins migrated into PEG phase from 

hydrophobic detergent. Meagher et al [79] revealed that protein separation or purification 

is employed by diffusion between co-flowing methods as shown in figure 8 (b). 

Figure 2.7 Determination of aqueous droplets containing phase-forming polymers defined binodal 
curve. The concentration of each polymer in the top (point 1) and bottom phase (point 3) is given by 
the intersection of the tie line 
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Figure 2.8 (a) Partitioning of fluorescently labeled molecules between three co-flowing streams in a 
microchannel (b) Fluorescence micrographs representing the sample partitioning in a microchannel  

 

Moreover, other studies have demonstrated the separation and purification of 

membrane protein [77], and bacteriorhodopsin[80]. Cell separation including plant cell 

[81], animal cell [82], and human cell [83] in ATPS has been also rarely reported by 

several pioneer groups. However, applications on the cell separation are very limited that 

should be more investigated in the future. 

 

2.3.3 ATPS in Droplet-based Microfluidics 

Under the conditions of typical microfluidic channels, it is difficult to from 

droplets spontaneously when two aqueous polymer solutions meet at junction area. 

However, due to biologically friendly environment, water-based ATPS is attractive 

approaches for various biomaterials [17][84]. Vijayakumar et al [85] Double emulsions 
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of PEG and dextran are formed at T-junction within oil-based continuous phase for cell 

extraction. Figure 9 indicate droplet formation, water-in-water-in-oil droplets, and cell 

extraction. One approach relies on the use of a chaperoning oil stream to form the 

droplets. Besides of using oil solution, monodisperse water-in-water emulsion droplets 

are developed by several research methods [86-90]. In the potential view of previous 

studies for aqueous droplet’s application, it is able to be to provide individual micro-

environment in aqueous two-phases system (ATPS) will be able to a more effective 

solution for quantitative cell biology and enzyme/protein separation [91]. 

 

 

 

Figure 2.9 Cell with Ab-NIPAM within dextran at a microfluidic T-juntion (a) and in a dextran 
droplet prior to mixing (b). After mixing, cells partition to the enter PEG phase (c) [85]. 
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2.4 Summary  

Through the literature survey in this chapter, we explored the different techniques, 

methods and processes of droplet-based microfluidics and aqueous two-phase systems. 

The researches on water-in-oil (w/o) monodispersed particles made through droplet-

based microfluidic device did not only lead to the achievement of uniformity and size-

controllable particles but also allowed the use of these particles into diverse applications 

in biology and chemistry. As shown in this chapter, ATPS in droplet-based microfluidics 

could be a powerful tool to access water-in-water types of particles but it is challenging 

to handle its low interfacial tension in microfluidic device.  

Therefore, the research in this thesis conducted with the purposes as below: (1) to 

demonstrate geometry effect on ATPS droplet formation, (2) to study the general 

limitations to break up droplets, (3) to determine suitable ATPS droplet formulation 

condition, (4) to establish a stable droplet size. 

In this thesis, the effect of microfluidic device geometry on ATPS droplet 

generation has been surveyed. A typical process of droplet formation in microfluidic 

device with T-junction, cross-junction, and double cross junction will be described.  
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Chapter 3 

 

 

Dextran Droplet Generation in Microfluidic ATPS 

 

This chapter is about monodispersed microdroplet generation in 

microfluidic aqueous two-phase system (ATPS). Droplet generation using 

aqueous two phase systems (ATPS) in microfluidic device was studied by various 

junction areas which were considered as T-junction, flow-focusing, and double-

flow-focusing (or H-junction). Disadvantage of low interfacial tension and high 

viscosity between aqueous phases make it experimentally difficult to produce 

uniform micro-droplets. A double-flow-focusing microfluidic device is able to be 

a crucial method to generate water-in-water (w/w) droplets due to the stability of 

dispersion between two junction areas. When second continuous phase was 

injected, the pressure between two junctions has been changed well controllable 

for droplet breakup. By comparing each of channels, such as T-junction and flow-

focusing which are widely used in microfluidics, double-cross junction could 

prove that uniform ATPS droplets were generated. Various sized droplets were 
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also pinched off among T-junction, flow-focusing, and double-flow-focusing, 

representing the possibility of uniform droplets and the regions of droplet 

generation in ATPS. It was also estimated for the standard deviation of droplet 

size to demonstrate the uniformity in T-junction, flow-focusing, and double-flow-

focusing, respectively.  

 

3.1 Introduction 

Aqueous two-phase systems (ATPS) consist of two immiscible fluids in a bulk 

water solvent [92]. High water content in such systems can give a mild condition for 

large scale separation of biological materials, allowing the stabilization of biomaterials, a 

first step of isolation, an additional preparative application, and analytical applications 

[93]. Since the study of droplet generation using ATPSs in macro scale [94], ATPS 

droplet formation has been recently advancing in microfluidic device and resulting 

diverse applications for cell extraction [82] and diffusive mass transfer [79]. ATPSs have 

extremely low interfacial tension (less than 10-4 - 10-6 µN/m) more than organic/water 

system (more than 1 - 100 mN/m) [95][96].  Therefore, it is necessary for controlling of 

brittle and elastic interfacial tension and high viscosity in microfluidic device. The low 

interfacial tension disturbs the driving force impact on droplet generation. Therefore, to 

handle of low interfacial tension of ATPSs in microfluidic device has become a major 

obstacle for droplet generation since the beginning of study of ATPS droplets [89][97].  

Several research groups have solved this experimental challenge with difference 

approaches.  However, all experimental results derived from external factors to cause 

perturbation of hydrodynamic focusing. The electrodes [34], multi-layers microchannel 
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with orifice combined with Braille pin valve [89], piezoelectric cantilevers [95], and 

mechanical vibrator [88], respectively, were embedded inside microfluidic device. To 

obtain monodispersity with the low interfacial tension in ATPSs, it is required to 

periodically change dispersed phase. In contrast to these external installations, double-

flow-focusing channel drew high-throughput screening advantageous of simple method, 

cost effective, and heavy workload. Alternatively to the continuous mechanical pressure 

by pressure-driven flow, no external actuations were used. 

Hence, in this chapter, we demonstrated the effect of double-flow-focusing 

channel to produce water-in-water (w/w) droplets in microfluidic device. T-junctions and 

flow-focusing, broadly used for microfluidic device, were compared with double-flow-

focusing channel. This approach consists of a series of two flow-focusing junctions 

where one dextran phase (dispersed) and two PEG phases (continuous) were injected into 

the device. Intriguingly, theses droplets can be developed within a combination range of 

flow rate conditions where the droplet regime can be predicted. Thus, the double-flow-

focusing microfluidic device brings the possibility of uniform water-in-water (w/w) 

droplets with an extremely low interfacial tension of ATPS.   

 

3.2 Materials and Methods 

For aqueous two-phase systems, Poly(ethylene glycol) (PEG MW 8000 and 

20000, Sigma-Aldrich Co., St. Louis, MO, USA) and dextran (MW 500000 and 40000, 

Sigma-Aldrich Co., St. Louis, MO, USA ) were used as immiscible aqueous phases in 

microfluidic device. The feature of ATPS that purple dye was in water phase and not in 

oil phase, while PEG contained most dye and some as consisted within dextran phase 
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represented in figure 1. PEG and dextran were dissolved into deionized water and 

Phosphate buffered saline (PBS) (10x, Sigma-Aldrich Co., St. Louis, MO, USA) to be 20 

w/w % PEG and 10 w/w % Dextran, respectively. These molecular weights were chosen 

for the potential of biological application in the future. The physical properties of the 

dextran-rich and PEG-rich were obtained from published data for ATPSs [98][99]. 

 
 
 
 
 
 
 
 
 

 
3.3 Fabrication of Microfluidic Device 

Microscale complex structures devices and systems (1µm - 100µm) can be 

manufactured through micro-electromechanical system (MEMS) technology. The major 

advantages of MEMS are that they are smaller, lighter, faster, and usually more precise 

than their macroscopic counterparts. The development of MEMS devices requires 

specific fabrication technologies, usually involving a structured sequence of operations 

that enable precision, flexible design, control systems manipulation, repeatability, and 

accuracy [100]. From the processing of photolithography and soft-lithography (or PDMS 

replica processing), microfluidic device was prudently fabricated. (Figure 2) The 

photolithography technique was used for making a microchannel mold on a silicon 

Figure 3.1 (a) water and oil system (b) aqueous two-phase system (ATPS) in macroscope, 
respectively. Unlike water/oil system, ATPS facilitates mass transfer through interface effectively.  
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substrate (SU-8 50, MicroChem Corp., MA, USA) resulting from spin coat, soft-baked, 

exposure to UV light through a chrome mask, and Post-Exposure-Baked. The height of 

mold was 150µm. The water is rinsed in a developing solution (SU-8 developer, 

MicroChem Corp., MA, USA) which removes the unexposed area of photoresist, and 

exposed areas of photoresist in case of negative photoresist leaves micro-patterns 

illustrated in figure 2 (left).   

After development, a microfluidic device was prepared with which 

Polydimethylsiloxane (PDMS) (Dow Corning Sylgard 184) was mixed with curing agent 

at 10:1 ratio, poured onto the microchannel mold, cured at room temperature for 2 days, 

peeled from the mold, cut to desired size and punched with holes at the end of the 

channels for tubing connection with a tip diameter of 0.75 mm (Harris Uni-Core Co., 

USA). The surface of the master mold was functionalized with trichloro(3,3,3-

trifluoropropyl) silane (Sigma-Aldrich, USA) for stripping the hardened PDMS replica 

easily after molding show in figure 2 (right). 
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3.4 Experimental Setup 

The monodispersed water-in-water emulsions were prepared by utilizing pressure-

driven-based microfluidic device. The round Polytetrafluoroethylene tubing (OD 0.016 

inch, ID 0.004 inch, Cole-Parmer Co., USA) was inserted inside microchannel. For 

formation of ATPSs droplets, PEG as continuous phase and dextran as dispersed phase 

were injected into microfluidic device connected with pressure pump (Mitos P-Pump, 

Dolomite Microfluidic Co., Royston, United Kingdom). Three pressure-driven pumps 

were conducted for T-junction, Flow-focosing, and double-cross junction microfluidic 

Figure 3.2 Schematic of fabrication process for microfluidic device via photo-lithography (Left) and 
soft-lithography technologies (Right) 
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device. All the operation of pump and microscope were connected and controlled by 

using computer software program provided by Dolomite Microfluidics Company. For the 

microfluidic approach, PDMS microfluidic device was observed through an inverted 

microscope (Olympus BX53F, Tokyo, Japan) equipped with a charge-coupled device 

(CCD) colour camera (Olympus DP72, Tokyo, Japan). The 20x objective lens was used, 

and the exposure time was set to 100 ms with ISO 800 to take images (resolution 1360 x 

1204 pixels, 15 fps), respectively. The dimension of microchannel, experimental setup, 

and microfluidic device injected through tube are shown in figure 3. At least more than 

200 ATPSs droplets were collected and measured for diameter of droplets. The diameter 

of droplets was measured by using an open-source image processing software, Image J 

after captured through CCD camera. A frame of pictures was captured after the liquid 

broken into a drop threaded through the focusing nozzle. A typical set of flow rate by 

pressure-driven pump for the dispersed and continuous phases was 50 mbar and 300 

mbar, respectively.  
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3.5 Droplet Generation in T-junction 

A typical process of formation of droplets in the T-junction can be studied as 

follows. When ATPS solutions are injected, the two aqueous fluids form an interface and 

droplets through main channel. Here is an observation that dispersed phase, dextran flow, 

flows along the channel wall without breaking off in T-junction. The size of the droplets 

relies on the flow rates of the two solutions. Increased continuous phase led to small 

diameter of droplet with ratio of dextran pressure to PEG pressure. The fact that the shear 

force affect interface between the two fluids driving the generation of droplets is well 

known. However, unlike previous studies that there are two regimes revealed as the 

Figure 3.3 Dimension of ATPS droplet-based microfluidics with (a) T-junction (b) flow-focusing in 
45, 90, and 135 angles, (c) double-flow-focusing, and (d) pressure-driven flow conducted with 
microfluidic device, (e) Experimental setup (f) ATPS microfluidic device. 



www.manaraa.com

	   32	  

parameters are varied: dripping, and squeezing [63], the dispersed phase (Dextran), 

overall, shows the characteristic movement sticky to the wall in all range of flow rate s. It 

can be discussed that when fluid meet at junction, the dispersed phase are much stable 

and adhesive to the wall, thus it is difficult to break-off for the formation of droplets. 

Also, even though the rate of the continuous phase increases to impact on droplet pinch-

off, shear force cannot overcome the interfacial tension illustrated in figure 4. The 

arbitrarily generated droplets and various sizes of droplets also cannot be controlled by 

the flow rate representing in figure 5. The result of T-junction presents ATPS 

characteristics that dextran stream met PEG at junction pinch off in terms of pressure 

change. However, the uniform droplets could not be generated because of low interfacial 

tension of ATPS characteristic and high adhesion to PDMS. The droplets were generated 

not in junction area but in main channel, categorizing into squeezing regime only. For 

transition from squeezing to dripping in T-junction, the capillary number should be high 

enough so that spherical droplets can be emitted [63]. On the contrary, behavior of two 

aqueous fluids in T-junction in contradiction to two immiscible ones does not match to 

previous studied. Therefore, the adhesion of dispersed phase overwhelms any other 

factors, such as shear force and interfacial stresses.  
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Figure 3.5 Varying PEG/dextran pressure ratio changes the diameter of spherial droplet in T-shape 
microchannel. (Top)  PEG(MW 8000, 20%, w/v(weight per volume)) and Dextran (MW 500000, 
10%, w/v), (Bottom) PEG(MW 20000, 20%, w/v) and Dextran (MW 40000, 10%, w/v), respectively. 

Figure 3.4 Droplets produced using pressure controlled setup in T-junction. 



www.manaraa.com

	   34	  

3.6 Droplet Generation in Flow-focusing with Different Angles 

Common design for micro-droplet generation, called flow-focusing, is 

investigated on ATPS droplet formation. As water-in-oil droplet is made, dextran stream 

as dispersed phase is breaking off in cross-junction. A typical example of a flow-focusing 

is described that continuous phases perpendicularly meet.  The dispersed phase is squeeze 

by two counter-flowing streams of the continuous phase. Generally, droplets can be 

formed in either dripping or jetting regimes. Flow rate, viscosity ratio of both phases, and 

channel geometries as factors of droplet breakup dynamics affect the droplet generation 

[63]. Transition from dripping to jetting resulted in Rayleigh-Plateau instability and the 

growth time of the dispersed thread [101]. However, dextran droplet’s size has a variety 

of diameters in flow-focusing and the total flow rate influence the size of droplets.  

Dispersed phase did not break up at focusing area and keep jetting flow. Controlling the 

flow rate can reduce the thread size and distance, but the one in flow-focusing does break 

up irregularly. The deviation of droplet size in various range of flow rate proves that 

droplets are formed randomly. To obtain a better understand of shear stresses impact on 

fluid instabilities, three different types of flow-focusing channels are prepared: 45, 90, 

and 135 degree shown in figure 6. As a result of fluid regime in different flow-focusing, 

135 degree flow-focusing applies more force to dispersed phase and leads to reduce the 

deviation value compared to 45 and 90 degree. However, viscous forces did not increase 

the growth of deformation of thread to pinch off. From the view of inertial force, 

elongation of the dispersed phase cumulated and kept the formation of long fluid thread. 

Hence, the uniformity of droplets was not demonstrated in flow-focusing. It is extremely 

difficult for disperse stream to transfer to dripping regime. 
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Figure 3.6 Droplets produced using pressure controlled setup in terms of pressure ratio. 60°, 90°, and 
135°. Two continuous phases focus disperse phase and break it into polydispersed droplets. 
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3.7 Droplet Generation in Double-flow-focusing  

In this work, we used a simple method added one more crossed junction next to 

the former crossed junction for stable fluid dynamics. With double-cross junction in 

microfluidic device, we drew a visible conclusion on the effect of geometry, 

concentration, and various pressure-controlled flows conditions for the hydrodynamics of 

Figure 3.7 Varying PEG/dextran pressure ratio changes the diameter of spherial droplet in flow-
focusing microchannel. (Top)  PEG(Mw 8000, 20%, w/v) and Dextran (MW 500000, 10%, w/v), 
(Bottom) PEG(MW 20000, 205, w/v) and Dextran (Mw 40000, 10%, w/v), respectively. 
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breakup of two immiscible fluids. Double-cross junction device consists of a series of 

two flow-focusing which one stream of dextran as disperse phase and two stream of PEG 

as continuous phase were injected. In conclusion, double-cross junction area could lead to 

well-controlled ATPS droplet break up. Previous studies of junction geometry for droplet 

generation in microfluidic device implemented only attention of channel geometry; 1) 

upstream, dispersed and continuous flow channel width, and 2) downstream, narrow 

orifice [51][102]. Furthermore, transition between jetting and dripping induced by 

increasing or decreasing flow rate regarding capillary number [63]. The main observation 

in cross junction area presented that various sizes of droplets were formed with changes 

by pressure-driven pump. Additional flow-focusing make it possible to generate 

monodispere w/w droplets as shown in figure 8. However, due to the characteristic of 

ATPS stream stretching with one cross junction, additional installation should be 

conducted regardless of those factors above. It was observed that the dispersed phase had 

stretchiness because of biocompatible polymer solution. Therefore, flow-focusing device 

with double-cross junction was a valid method for fine ATPS droplet break-up. 

 

 Figure 3.8 Formation of microdroplets using double-flow-focusing and droplet generated between 
two junction areas due to constant pressure enhanced in terms of pressure ratio.  
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3.7.1 The Change of Flow Rate of Dispersed Phase: Breaking-

up Location 

Various sized droplets in terms of dextran phase change were generated between 

two cross junctions. Each droplet size had 2% of deviation away from the average droplet 

size in monodispersity area. The higher is flow rate of dextran, the more increase 

deviation value of droplet size. As fluid transfer region from monodispersity to 

polydispersisty in terms of flow rate of dextran phase, disperse phase loses their 

uniformity breaking through the line of demarcation of second junction are in figure 9. 

Pressure distribution between two junctions area make it stable for ATPS droplet 

generation. Moreover, the breakup location relies on the change of flow rate of disperse 

phase. The disperse phase has a forward movement up to second junction when increased.  

When flow rate of dextran continuously increases, distance of breakup moves forward 

downstream which the average size of droplets was barely deviated.  
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3.7.2 The Change of Flow Rate of First Continuous Phase: 

Droplet Size Control 

Droplet size formed regularly between two cross junctions, but the value of 

standard deviation where droplet generated close to second junction was larger than the 

one where droplet generated close to first junction. The effect of first PEG flow rate 

influenced to disperse dextran size. In pressure distribution between focusing junctions, 

first continuous phase afford droplet size diversity as one in typical organic/water system 

[103]. However, dispersed flow was beginning to be loosely stretched before they 

reached second junction area. This is interpreted that thinner thread of jetting flow breaks 

up earlier and became small droplet size due to strong viscoelastic force. The 

Figure 3.9 Dextran change impacted on monodispersity and polydispersity in PEG (Mw 8000, 20%, 
w/v) and Dex(MW 500000, 10%, w/v) (top), and PEG(MW 20000, 20%, w/v) and Dextran(MW 
40000, 10%, w/v) (botton), resprectively. Dextran flow impact on droplet generation moved the 
location of pick off of disperse phase, which lead to polydisperse region 
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characteristic of polymer solution such as ATPS is that fluids have non-Newtonian and 

their dynamics of viscoelasticity play a vital role in droplet formation in ATPS. In this 

perspective, first junction area is able to regulate the interface force between two aqueous 

phases within suitable pressure distribution dawn by second junction are.  When PEG1 

flow rate increased, the size of droplets are decreased and transition from jetting to 

dripping is observed in terms of first continuous phase rates presenting in figure 10.   

 

 

 

 

Figure 3.10 PEG1 change impacted on monodispersity and polydispersity in PEG (MW 8000, 20%, 
w/v) and Dex(MW 500000, 10%, w/v) (top), and PEG(MW 20000, 20%, w/v) and Dextran(MW 40 
000, 10%, w/v) (bottom), respectively. Within monodispersity area, droplet size can be controlled in 
terms of PEG1 flow rate. 
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3.7.3 The Change of Flow Rate of Second Continuous Phase: 

Distance Between Droplets 

Dextran droplet regularly generated in high flow rate of second PEG. The 

deviation of droplet size was less than 2% away from the average size, while various 

droplet sizes were formed in low flow rate of PEG2 in second junction. Hence, the effect 

of second cross junction has played an essential role in uniform droplet generation. 

Even though flow rate of PEG2 in second junction increased and decreased less 

than dextran flow rate, droplet size were not changed but uniformly generated. We 

concluded that there is no size impact on the change of flow rate of second PEG phase 

within the monodispersity area in figure 11.When second PEG flow rate came down to 

polydisperse boundary, dextran was adhered to the wall and continued to move out of 

second junction and then, various droplet sizes were formed. It is crucial to discover 

certain flow rate of PEG2 to make it stable for monodisperse droplets with dextran and 

PEG1 flow rates. 

Average of droplet sizes in terms of difference of second flow rate of PEG was 

not dramatically changed, but standard deviation was decreased by increasing the PEG 

flow rate so that dextran droplet could be formed regularly in downstream channel. 

Higher second PEG flow rate, longer distance of between droplets in microchannel that 

did not impact on droplet size. We conclude that transition from jetting to dripping make 

is possible with additional junction changing pressure distribution. Distinctive feature of 

viscoelasticity reaches a conclusion that for ATPS fluids, the escalation tension in the 

thread has small influence on the capillary number. The size of droplet generated in terms 
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of PEG2 is not impressively controlled, but PEG2 phase present the distance between 

droplets when it increases shown in figure 12. 

 

 

 

 

 

 

 

 

Figure 3.11 PEG2 change impacted on monodispersity and polydispersity in PEG (MW 8000, 20%, 
w/v) and Dex(MW 500000, 10%, w/v) (top), and PEG(MW 20000, 20%, w/v) and Dextran(MW40000, 
10%, w/v) (bottom), respectively.  
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Figure 3.12 Distance between droplets in terms of PEG2 flow rate over PEG1 flow rate. PEG (MW 
8000, 20%, w/v) and Dex(MW 500000, 10%, w/v) (top), and PEG(MW 20000, 20%, w/v) and 
Dextran(MW40000, 10%, w/v) (bottom), respectively. Effect of PEG2 is highly acting on increasing 
the space between droplets   

 

3.7.4 Stable and Unstable Regime 

Dextran droplets uniformly generated in terms of pressure-driven flow rate. As 

dextran increased with fixed PEG1 and PEG2 pressure, stable and unstable region can be 

existed at certain range of dextran pressure ratio. The average droplet diameter is 47um. 

Dextran droplet regularly generated with PEG pressure changing. The uniform droplets 
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generated with PEG1 changing and the stable region was considered getting increasing 

into stable region. Droplet size did not changed at stable region in term of PEG2 pressure. 

In unstable region, which is outside slope, highly decreased up to certain PEG2 pressure 

in stable region and uniform droplet could be dispersed.  Various droplet sizes were 

formed in low pressure of PEG2 in second junction. When PEG2 pressure was smaller 

than PEG1 pressure at fixed dextran pressure, droplet did not uniformly generated and 

focus-flow moved out of second junction. To obtain stable droplet size, PEG2 pressure at 

least larger than PEG1 pressure so that droplet could be formed between double cross 

junctions. High concentration of polymer solution involves the increase of viscosity that 

more viscous force applied to disperse phase to pinch off. Two types of concentration of 

ATPS having different interfacial tension were demonstrated. It is revealed that 25 wt% 

PEG expected larger interface force than 20 wt% is more loaded by PEG1 and PEG2 

flow rates in figure 13. 

 

 

 

Figure	  3.13	  Range	  of	  droplet	  generation	  in	  terms	  of	  molecular	  difference 
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3.8 Conclusions 

In this work, we demonstrated water-in-water droplet generation in microfluidic 

device using aqueous two-phase system. Due to extremely low interfacial tension, 

additional flow-focused channel design would be alternative and new approach to solve 

the difficulty of droplet generation. Through the combination of a disperse phase and two 

continuous phases in double-flow-focusing, we are able to generate droplet size with 

diameter less than 100 µm. The additional flow-focusing junction in double-flow-

focusing design creates uniform and controllable size microdroplets. Double-flow-

focusing microchannel provides a versatile feature in designing ATPS droplet-based 

microfluidic device. Therefore, we expect that the information of uniform ATPS droplets 

regime provide more biological and chemical applications [22][23]. There are various 

cases of ATPS using polymer-polymer or polymer-salt in terms of molecular weight and 

concentration. Each of one is widely used for certain biological applications. Hence, size 

controllable and uniform droplets in terms of different types of aqueous two-phase 

system should be investigated in the future. 
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Chapter 4 

 

 

Poly(ethylene glycol) (PEG)  Droplet Generation 

in Microfluidic ATPS 

This chapter will examine Poly(ethylene glycol) PEG monodispersity in double-

flow-focusing design within microfluidic device. Because of low interfacial tension and 

depending on phase partitioning condition, PEG droplet generation has restrictions in 

droplet generation. As we investigated dextran droplet generation within double-flow-

focusing, it is essential for both dextran and PEG droplet to expand the possibility of 

double-flow-focusing. In section 4.1, a PEG as disperse phase, and two dextran, as 

continuous phase, will be prepared to conduct PEG droplet generation. The following 

section (4.2) will extends previous work on droplet generation in aqueous two-phase 

system microfluidics to interfacial tension effects constructed by the presence of 

surfactants.   
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4.1 Introduction  

An aqueous two-phase system (ATPS) droplet-based microfluidic approach has 

been implemented by double-flow-focusing to generate aqueous emulsion and jets. Due 

to the advantage of biocompatibility, monodisperse water-in-water emulsion can be used 

as platform for biomaterials [104]. Extremely low interfacial tension by the characteristic 

of ATPS leads new strategies to manipulate fluid flows. In this section, as we conducted 

above for dextran droplet generation through double-flow-focusing, PEG emulsion within 

dextran phase has been investigated. The PEG emulsion will be able to take account of 

biocompatibility and eco-friendly surroundings in biomedical applications [78][105-107]. 

Common solutes for aqueous two-phase system that two phases separated into water 

above the critical concentrations are summarized in Table 4.1. The two liquid phases in 

ATPS are formed from the uneven distribution of the components. At low concentrations 

of polymer, the solution exists as a single phase, and at high concentrations phase 

separation occurs. A binodal curve separates these two regions of the diagram and then, 

compositions for each phase of a phase separated ATPS lie on this curve. The condition 

of two phases or single-phase separation exists at micro scale and should deal with 

droplet formation in aqueous two-phase system microfluidic. 
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Table	  2	  List	  of	  common	  aqeuous	  two-‐phase	  systems	  formed	  with	  biocompatible	  additives.	  In	  
each	  column,	  solute	  A	  and	  solute	  B	  represent	  a	  pair	  of	  incompatible	  solutes.	  In	  addition,	  some	  
proteins	  and	  polysaccharides,	  such	  as	  sodium	  caseinate	  and	  sodium	  alginate	  can	  also	  form	  a	  
biocompatible	  ATPS	  [105]. 

Solute A Poly(ethylene) glycol (PEG Dextran Methylcellulose 

Solute B Dextran PEG Dextran 

 Polyvinyl alcohol (PVA) PVA PVA 

 Polyvinyl pyrrolidone (PVP) PVP PVP 

 Tripotassium phosphate (K3PO4) 
Sodium citrate or Sodium sulfate 

Methycellulose Na2HPO4 

  

4.2 Droplet Generation in Double-flow-focusing 

Manipulation of PEG jetting flow in microfluidic device has become an 

indispensable method for separation of DNA [108], proteins [79], and cells [182]. 

Compared to water/oil system, PEG environment involves low interfacial tension with a 

range of 10-2 mN/m to 1 mN/m shown in Table 4.2. Hence, the value of interfacial 

tension related with inertial and viscous force is necessary to stimulate the interfacial 

instability of aqueous phase jet [104][109][110]. As we considered above section, typical 

design microchannels do not utilize to make water-in-water (w/w) droplets from ATPS 

with low interfacial tension. Other studies used two different methods to stimulate 

breaking up of aqueous jets into monodisperse drops. Hydrodynamics perturbation is 

induced for droplet formation. External vibrators, such as piezoelectric actuator [87][115] 

or mechanical vibrator [90][116], are implemented to disperse jet flows of PEG. Due to 

the growth of Rayleigh-Plateau in stability by external force applying amplitude of 

perturbation, the corrugated jet can be controlled by frequency illustrated in figure 1.  
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Electro-hydrodynamic force is also utilized for droplet formation in microfluidic device. 

By applying DC electrical field, aqueous dropet (w/w) is split off from viscous jetting 

flow because two incompatible solutions have different electrophoretic mobility shown in 

figure 2 [117].  

Table	  3	  List	  of	  the	  maximum	  interfacial	  tension	  values	  of	  different	  aqueous	  two-‐phase	  
systems	  documented	  in	  literature.	  Interfacial	  tension	  between	  two	  immiscible	  aqueous	  two	  
phases	  increases	  with	  the	  concentration	  of	  incompatible	  solutes	  of	  ATPS.	  The	  PEG/salt	  system	  
typically	  has	  a	  relatively	  large	  interfacial	  tension	  (10-‐1	  -‐	  1	  mN/m)	  and	  low	  viscosities	  (<20	  
mPa-‐s);	  while	  the	  protein/polysaccharide	  system	  typically	  has	  an	  ultra-‐low	  interfacial	  tension	  
(≤10-‐2	  mN/m)	  and	  a	  relatively	  high	  viscosity	  (>	  50	  mPa-‐s)	  

PEG/salt system [111] PEG/Na3CO3 

1.99 mN/m 

PEG/K2HPO4 

1.19 mN/m 

PEG/Na2SO4 

0.80 mN/m 

PEG/polysaccharide 
system 

PEG/dextran [25] 

0.35 mN/m 

PEG/maltodextran [112] 

0.12 mN/m 

Protein/polysaccharide 
system 

gelation/dextran 
[113] 

0.03 mN/m 

Sodium caseinate/ Sodium alginate 
[114] 

0.02 mN/n 

 

 

Figure	  4.1	  Forced	  breakup	  of	  a	  w/w	  jet	  induced	  by	  hydrodynamics	  perturbation.	  (a)	  and	  
(b)	  Breakup	  bebaviors	  of	  a	  w/w	  jet	  triggered	  by	  forced	  oscillations	  at	  different	  
perturbation	  frequency,	  ƒ.	  Within	  an	  optimal	  range	  of	  frequency,	  monodisperse	  w/w	  
droplets	  are	  generated,	  without	  stellite	  droplets,	  as	  shown	  by	  the	  blue	  dots	  [87][90]. 
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In this section, as we previously accounted for the possibility of monodisperse 

dextran particles generated from double-flow-focusing, same approach can be employed 

for uniform PEG droplet emulsion. Poly(ethylene glycol) (PEG Mw 8000, Sigma-Aldrich 

Co., St. Louis, MO, USA) and dextran (Mw 500 000, Sigma-Aldrich Co., St. Louis, MO, 

USA ) were used as immiscible aqueous phases in microfluidic device. PEG and dextran 

were dissolved into deionized water and Phosphate buffered saline (PBS) (10x, Sigma-

Aldrich Co., St. Louis, MO, USA) to be 20 and 40 w/w % PEG, and 10 and 30 w/w % 

Dextran, respectively. Since the forced shear stress developed between two junction areas 

with laminar flow in double-flow-focusing design makes it possible to generate 

monodispersed dextran droplet, PEG droplet process can be expected in same manner. In 

double-flow-focusing channel, PEG phase (disperse) and dextran phase (continuous) 

form laminar flow. Depending on the combination of the ratio of PEG rate and two 

dextran rates, PEG jet is manipulated. 

Figure	  4.2	  Formation	  of	  w/w	  emulsion	  induced	  by	  electro-‐hydrodynamic	  chopping	  [117]. 
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Thus, for phase partitioning, it should be considered for phase partitioning in 

microchannel to handle two immiscible. When PEG flow, dispersed phase, meets dextran 

flow, continuous phase, the phases are divided with the presence of focusing flow. When 

disperse phase moves on downstream, pressure-driven pumps change a unit volume of 

phases, and then the phase partitioning is not appealed at the end of channel. With the 

same flow rate of second dextran, the pressure ratio of PEG and first dextran present the 

status of two-phases in double-flow-focusing. Although droplets are developed at the 

ratio of pressure between 2.35 and 4.11, the interface of droplets in downstream has 

destroyed due to low interfacial tension, viscous force, and phase change across binodal 

curve. At small Capillary number, the droplet formation is highly depended on interfacial 

tension and viscosity [118][119]. However, viscoelasticity due to low interfacial tension 

and phase concentration depending on binodal curve should be deal with droplet-based 

microfluidics using aqueous two-phase system. When droplets are generated within 

upstream (between two junctions), the phase in downstream begins squashing the 

interface of droplets. In unit volume of microchannel, PEG phase concentration is not 

enough to form phase partitioning shown in figure 3 and then, dextran-rich phase is 

remained in downstream. Therefore, doubt-flow-focusing approach has alternative 

methods for water-in-water droplet monodispersity but, it cannot avoid the interface 

collapse in channel.  
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Figure	  4.3	  PEG	  droplet	  manipulation	  through	  double-‐flow-‐focusing.	  The	  pressure	  of	  dextran	  2	  phase	  is	  100	  mbar	  and	  the	  ratio	  
of	  pressure	  of	  dextran	  1	  and	  PEG	  are	  conducted	  from	  1.76	  to	  4.70.	  The	  regime	  of	  droplet	  generation	  is	  between	  2.35	  and	  4.11	  
and	  other	  condition	  makes	  two	  phases	  single	  phase	  across	  bionodal	  curve.	   
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4.3 Surfactant Effect on ATPS Droplet Generation  

Surfactants are an important portion of the droplet-based microfluidics. The 

purpose of the use of surfactant involves the stabilization of droplet interface when they 

apply for biocompatibility of the system and in the process of molecular transfer between 

droplets [120]. When solution contains surfactant, the role of surfactant is to reduce the 

interfacial tension between the dispersed and continuous phases, thus facilitating surface 

deformation. However, surfactant affects the phase behavior and they a little increase 

interfacial tension in ATPS [121][122]. In viscous fluid system, the drag force on the 

droplet is intermediate between solid bodies [123]. Surfactants are generally utilized to 

stabilize emulsion droplets to avoid coalescence in microfluidics. Hence, PEG droplets in 

double-flow-focusing are expected by using surfactant impact on droplet emulsions. We 

prepared high concentration of polymer solutions enable to conjecture high interfacial 

tension. Poly(ethylene glycol) (PEG Mw 8000, 40% w/w, Sigma-Aldrich Co., St. Louis, 

MO, USA) and dextran (Mw 500 000, 30% w/w, Sigma-Aldrich Co., St. Louis, MO, 

USA ) were used as immiscible aqueous phases in microfluidic device. PEG and dextran 

were dissolved into deionized water and Phosphate buffered saline (PBS) (10x, Sigma-

Aldrich Co., St. Louis, MO, USA) Surfactant, TWEEN 80 (Sigma-Aldrich Co., St. Louis, 

MO, USA) (1 wt %) within dextran 10 % solutions, prevent the coalescence of the 

droplet. With the absence and the presence of surfactant, PEG droplet generation is 

appraised within double-flow-focusing. In high concentration of aqueous solutions 

leading relatively large interfacial tension in ATPS, the disperse phase cannot appeal to 

continuous phase apart from the range of pressure ratio between 2.68 and 3.5. Besides, 

PEG phase in the downstream did not sustaining its phase partitioning. The certain range 
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of flow rate ratio made it possible to form two-phase system and polydispersed droplets. 

With surfactant, dispersed phase is jetting flow within continuous phase as two-phase 

system at any range of flow rate. Apart from those range of flow rate, transition from 

jetting to dripping region for monodispersity of PEG droplets was not occurred. However, 

currently, surfactant in aqueous two-phase system has another consequence. As previous 

work resulting in interfacial tension increase in ATPS, the disperse phase kept jetting 

flow as two-phase system shown in figure 4. Therefore, while surfactant has played a 

vital role in droplet-based microfluidic using water/oil solutions, it is more required for 

aqueous two-phase system microfluidics to complement the use of surfactant and its 

characterization. It is because that surfactant has an effect on stabilization of droplet 

interface [120] and the control of interfacial properties of different phases brings the 

opportunity of multiple emulsions. 
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Figure	  4.4	  Droplet	  production	  in	  double-‐flow-‐focusing	  microfluidic	  chip.	  The	  polydispersity	  of	  the	  droplets	  are	  emerged	  within	  
two-‐phase	  region	  outside	  binodal	  curve.	  With	  surfactant,	  the	  dispersed	  jetting	  flow	  continues	  to	  downstream	  without	  corrugation. 
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Chapter 5 

 

 

Conclusion 

 

Droplet-based microfluidics plays a vital role in miniaturization of the traditional 

chemical process and biological synthesis. Water and oil phases are mostly used for 

droplet-based microfluidics. However, even biocompatible oil is not able to supply 

biocompatible environment as water to biomolecules such as cell, bacteria, or protein. 

Therefore, aqueous two-phase system (ATPS), which supplies more eco-friendly 

environment for biomolecules than water and oil system, would be appropriate system. 

When ATPS is applied to the microfluidics, it involves a number of advantages. Low 

interfacial tension, for example, is appropriate for mass transfer. ATPS microfluidics 

allows easy purification and separation in microchannel.  

In this thesis I designed the double-flow-focusing microfluidics to produce 

uniform water-in-water droplets. I enforced additional junction with popular method, 

called “flow-focusing” type, that two continuous phases changed the pressure distribution 

between two junction areas when disperse phase injected at certain combination of flow 
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rates. Depending on the combination of flow rates of disperse phase and two continuous 

phases, consistent or random size droplets were produced. Increasing disperse phase flow 

rate, transition from dripping to jetting flow occurred and deviation of droplet size was 

larger. Droplet size can be adjusted with first continuous phase and monodispersed region 

relied on second continuous phase. Droplets between 42 - 55 µm of dextran and 27 - 35 

µm of PEG could be generated. 

It observed that both dextran and PEG uniform droplets can be generated in 

double-flow-focusing which stimulate instabilities of interface in two phases. It 

demonstrated that the interface of an ATPS, as viscoelastic fluids, was much complex 

than water and organic solvent system and interfacial properties of ATPS was important 

for droplet generation.  

In this study, monodispersed dextran droplets can be firstly formed through 

double-flow-focusing without external equipment. Monodispersed dextran and PEG 

droplets can be generated upon suitable flow rates combination, however, sizes of 

droplets are barely controlled. Besides, the various approaches for ATPS droplet 

generation in this thesis are expected to provide a platform for many research fields, such 

as drug delivery, cell analysis, and protein extraction.  
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